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Abstract. A family of localized solutions of Brittingham’s type is constructed for different cylindric co-
ordinates. We use method of incomplete separation of variables with zero separation constant and, then,
the Bateman transformation, which enables us to obtain solutions in the form of relatively undistorted
progressing waves containing two arbitrary functions, each of which depends on a specific phase function.

PACS. 43.20.Bi Mathematical theory of wave propagation – 41.20.Jb Electromagnetic wave propagation;
radiowave propagation

The purpose of this Rapid Note is generalization of the
family of Brittingham’s localized solutions to the wave
equation known as the focus wave modes. In fact, they are
presently represented by three specific solutions: Gauss [1],
Hermite-Gauss [2], and Bessel-Gauss [3] modes. Most of
reported Brittingham’s type solutions [4–6] reduces to

Ψ (ρ, ϕ, z, τ) =
ρmeimϕ

(z − τ)m+1 v

(
z + τ +

ρ2

z − τ

)
, (1)

where m is an integer, ρ, ϕ, z are the circular-cylinder co-
ordinates, τ = ct is the time variable, c is the wavefront
velocity, and v is an arbitrary function. Our investigation
is connected with generalization of solutions of this partic-
ular type. In point of Courant and Hilbert’s terminology
[7], localized solutions (1) represent relatively undistorted
progressing waves

Ψ (r, τ) = g (r, τ) f (Φ (r, τ)) (2)

where r defines an observation point in some coordinate
system, f (Φ) is an arbitrary function with continuous par-
tial derivatives while Φ and g are fixed functions, called
the phase function and the distortion (or attenuation) fac-
tor. For Ψ being a solution of the wave equation, the phase
function must satisfy the Hamilton-Jacobi equation

(∇Φ)2 − (∂Φ/∂τ)2 = 0. (3)

The undistorted progressing waves are of great importance
for telecommunications, launching directional scalar and
electromagnetic waves (missiles), and other applications.
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Following [8], we construct the explicit solutions of the
homogeneous wave equation

[
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(
∂
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(
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)
+

∂

∂x2

(
h1

h2

∂

∂x2

))

+
∂2

∂z2
− ∂2

∂τ2

]
Ψ = 0

(4)

(h1 and h2 are the metric coefficients) in different orthog-
onal cylindric coordinate systems x1, x2, z in the form of
a family of wavefunctions with invariable profiles Ψ =
w (x1, x2) v (τ, z), that corresponds to incomplete separa-
tion of variables [9]. Putting the separation constant equal
to zero we get the solution of the wave equation (4) as

Ψ = w (x1 ± ix2) v (τ ± z) (5)

where w and v are arbitrary differentiable functions. Here
v satisfies the 1D wave equation

(
∂2/∂z2 − ∂2/∂τ2

)
v =

0 while w (x1 ± ix2) meets
(
∂2/∂x2

1 + ∂2/∂x2
2

)
w = 0,

which for the rectangular (Cartesian), elliptic-cylinder,
parabolic-cylinder, and bipolar coordinate systems is suf-
ficient for satisfying the wave equation because h1 = h2.
For the remaining circular-cylinder coordinates, x1 =
ρ, x2 = ϕ, equation (4) leads to another representation,
w (ρ, ϕ) = w

(
ρe±iϕ

)
, which is completely equivalent to

Cartesian-coordinate form w (x± iy).

Finally, the whole wavefunction is subjected to
one of the Bateman transformations [10] whose
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Cartesian-coordinate representation is

Ψ (x0, y0, z0, τ0)→ Ψ̃ (x0, y0, z0, τ0) =

1
z0 − τ0

Ψ

(
x0

z0 − τ0
,

y0

z0 − τ0
,
r2
0 − τ2

0 − 1
2 (z0 − τ0)

,
r2
0 − τ2

0 + 1
2 (z0 − τ0)

)
,

x0 = x/λ, y0 = y/λ, z0 = z/λ, τ0 = τ/λ,

r0 =
√
x2

0 + y2
0 + z2

0,

(6)

λ is a real constant parameter. The function Ψ̃ due to
transformation (6) is as well a solution of the wave equa-
tion, and here we use the method applied in [5,12] for
construction of new solutions from known wavefunctions.
Expressing the transversal coordinates through their di-
mensionless Cartesian counterparts x1 = x1 (x0, y0) , x2 =
x2 (x0, y0) and fixing the phase sign, v = v (τ + z), one
gets the general result for new wavefunctions

Ψ̃ =
1

z0 − τ0
w (φ) v (Φ) (7)

where φ is the transformed argument x1

(
x0

z0−τ0 ,
y0

z0−τ0

)
±

ix2

(
x0

z0−τ0 ,
y0

z0−τ0

)
while Φ takes the form z0 + τ0 + x2

0+y2
0

z0−τ0 ,

which is easily seen to be of type (2) with g = w(φ)
z0−τ0 and

f (Φ) = v (Φ). Thus, in the case of incomplete separation
of variables with zero separation constant, g is defined
within a factor w (φ), an arbitrary function of one pre-
scribed argument.

Examining different cylindric coordinate systems, we
get the following new families of localized wave structures:

(i) Rectangular coordinates, x1 = x, x2 = y, h1 = h2 = 1,

Ψ̃ =
λ

z − τ w (φr) v (Φr) , φr = λ
x± iy
z − τ ,

Φr =
1
λ

(
z + τ +

x2 + y2

z − τ

)
.

(8)

In the circular-cylinder coordinates, x1 = ρ, x2 = ϕ,
h1 = 1, h2 = ρ, −∞ < ρ < ∞, 0 ≤ ϕ < 2π, x =
ρ cosϕ, y = ρ sinϕ, one has equivalent representation
written as

Ψ̃ =
λ

z − τ w (φc) v (Φc) , φc = λ
ρe±iϕ

z − τ ,

Φc =
1
λ

(
z + τ +

ρ2

z − τ

)
.

(9)

Localized waves (1) are easily seen to be a special case
of (9) for λ = 1 and w

(
ρeiϕ

)
= ρmeimϕ.

(ii) Elliptic-cylinder coordinates, x1 = µ, x2 = θ, h1 =
h2 = a2

(
sinh2 µ+ cos2 θ

)
, −∞ < µ <∞, 0 ≤ θ < 2π,

x = a coshµ cos θ, y = a sinhµ sin θ, 0 < a <∞

Ψ̃ =
λ

z − τ w (φe) v (Φe) , φe =
a

z − τ cosh (µ± iθ) ,

Φe =
1
λ

(
z + τ +

a2

z − τ
(
sinh2 µ+ cos2 θ

))
.

(10)

(iii) Parabolic-cylinder coordinates, x1 = ζ, x2 = χ, h1 =
h2 = ζ2 + χ2, 0 ≤ ζ < ∞, −∞ < η < ∞, x = ζχ,
y = 1

2

(
ζ2 + χ2

)
,

Ψ̃ =
λ

z − τ w (φp) v (Φp) , φp =
(

λ

z − τ

) 1
2

(ζ ± iχ) ,

Φp =
1
λ

(
z + τ +

(
ζ2 + χ2

)2
4 (z − τ)

)
.

(11)

(iv) Bipolar coordinates, x1 = ξ, x2 = η, h1 =
h2 = a2/ (cosh ξ − cos η)2

, −∞ ≤ ξ < ∞, 0 ≤
η < 2π, x = a sinh ξ/ (cosh ξ − cos η) , y =
a sin η/ (cosh ξ − cos η) , 0 < a <∞,

Ψ̃ =
λ

z − τ w (φb) v (Φb) ,

φb =
a

z − τ arccoth
(
ξ ∓ iη

2

)
,

Φb =
1
λ

(
z + τ +

a2

z − τ
cosh ξ + cos η
cosh ξ − cos η

)
. (12)

Note that φ’s, as well as Φ’s, satisfy the Hamilton-
Jacobi equation (3), so all of them can be treated as
the phase functions. Moreover, it can be verified that
more general representation Ψ̃ = λ

z−τ F (w (φ) , v (Φ)) is
also possible, where F is as well an arbitrary differen-
tiable function with respect to both arguments. Actually,
the same is yielded if we replace the starting wavefunc-
tion (5) by Ψ = F (x± iy, τ + z) or its equivalent for
other coordinates. After transform (6) this leads to so-
lution Ψ̃ = λ

z−τ F (φ, Φ), equivalent to the previous result
due to the arbitrariness of F .

On the basis of the curvilinear-coordinate representa-
tions (8–12) one can construct the field components for
the case of TM electromagnetic waves as follows

E1 =
1
h1

∂2u

∂x1∂z
, E2 =

1
h2

∂2u

∂x2∂z
, Ez =

∂2u

∂z2
− ∂2u

∂τ2
,

B1 =
1
h2

∂2u

∂x2∂τ
, B2 = − 1

h1

∂2u

∂x1∂τ
, Bz = 0,

(13)

where the scalar function u is the Whittaker-Bromwich
potential [11]. Notably, for the case of cylindric coordi-
nate systems, the derivative ∂u/∂τ is a solution of the
wave equation (4). Therefore, putting ∂u/∂τ = Ψ̃ , we get
representation of the transversal components of the mag-
netic field in concrete cylindric coordinate systems:
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(i.a) Rectangular coordinates

Bx =
1

(z − τ)2

[
2yw (φr) v′ (Φr)± iλ2w′ (φr) v (Φr)

]
,

By = − 1
(z − τ)2

[
2xw (φr) v′ (Φr) + λ2w′ (φr) v (Φr)

]
;

(14)

(i.b) Circular-cylinder coordinates

Bρ = ±i
λ2

(z − τ)2 e±iϕw′ (φc) v (Φc) ,

Bϕ = − 1
(z − τ)2

[
2ρw (φc) v′ (Φc) + λ2e±iϕw′ (φc) v (Φc)

]
;

(15)

(ii) Elliptic-cylinder coordinates

Bµ = − 1

(z − τ)2

1
sinh2 µ+ cos2 θ

[
sin (2θ)w (φe) v′ (Φe)

∓ i
λ

a
sinh (µ± iθ)w′ (φe) v (φe)

]
,

Bθ = − 1
(z − τ)2

1
sinh2 µ+ cos2 θ

[
sinh (2µ)w (φe) v′ (φe)

+
λ

a
sinh (µ± iθ)w′ (φe) v (φe)

]
; (16)

(iii) Parabolic-cylinder coordinates

Bζ =
1

(z − τ)2

[
χw (φp) v′ (Φp)

± i

(
λ3 (z − τ)

) 1
2

ζ2 + χ2
w′ (φp) v (Φp)

]
,

Bχ = − 1

(z − τ)2

[
ζw (φp) v′ (Φp)

+

(
λ3 (z − τ)

) 1
2

ζ2 + χ2
w′ (φp) v (Φp)

]
; (17)

(iv) Bipolar coordinates

Bξ = − 2

(z − τ)2

[
cosh ξ sin η w (φb) v′ (Φb)

± i
λ

a

(cosh ξ − cos η)2

4− (ξ ∓ iη)2 w′ (φb) v (Φb)

]
,

Bη =
2

(z − τ)2

[
sinh ξ cos η w (φb) v′ (Φb)

− λ

a

(cosh ξ − cos η)2

4− (ξ ∓ iη)2 w′ (φb) v (Φb)

]
. (18)

We are reminded that in all above formulas w and
v are arbitrary differentiable functions, w′ and v′ denote

their derivatives. As it is easily seen, the localization prop-
erties of the above scalar and electromagnetic waves can
provided by corresponding choice of the functions w and
v. Well-known replacement (ETM,BTM)→ (BTE,−ETE)
allows using the same expressions for description of the
non-zero electric field strength components in case of elec-
tromagnetic waves of TE type. In the general case, ob-
taining ETM and BTE vectors involves integration with
respect to τ , which requires special consideration, in par-
ticular, specifying corresponding conditions. However, a
subset of possible solutions for all six components of the
electromagnetic field can be obtained if we consider the
scalar wavefunction as the potential itself rather than as
its time derivative, that is, if we put u = λ

z−τw (φ) v (Φ)
or even u = λ

z−τ F (φ, Φ). One can check by direct cal-
culations that corresponding components of the electro-
magnetic field constructed with relations (13) satisfy the
homogeneous Maxwell equation.

As the phase function φ is essentially complex,
concrete real-valued solutions are given by real or
imaginary part of the complex relationships. For
example, choosing the rectangular coordinates and
w = (x0 + iy0)2 we get two real-valued solu-
tions Ψ̃Re = λ (z − τ)−3 (

x2 − y2
)
v (Φr) and Ψ̃Im =

2λ (z − τ)−3
xyv (Φr). Separation of the real and imagi-

nary parts requires individual consideration for each par-
ticular type of the function w.

Note that applying to obtained waves (8–12) and
(14–18) the linear transform τ → (τ + βz) /ε, z →
(z + βτ) /ε, ε =

√
1− β2, β is an arbitrary complex pa-

rameter, which is also invariant with respect to the wave
operator, one can demonstrate that they can be rewritten
in more general form, in which real factors λ and 1/λ are
replaced by two independent complex parameters.

All previous consideration was constrained to solutions
with the phase function Φ of type z+ τ + ρ2/ (z − τ). Re-
markably, additional application of the transverse trans-
form τ → (τ + βx) /ε, x → (x+ βτ) /ε leads as well to a
solution of the wave equation, but with the phase function
of another, non-axisymmetric type

Ψ̃⊥ =
ελ

εz − βx− τ w
(
λ
x± iεy + βτ

εz − βx− τ

)
×v
(

1
ελ

(
z + βx+ τ +

(x+ βτ)2 + ε2y2

εz − βx− τ

))
.

(19)

Other examples of phase functions, promising for con-
structing relatively undistorted progressing waves, are
z ± τ + (ρ+ λ)2

/ (z ∓ τ) and ρ ± τ + z2/ (ρ∓ τ). The
last phase function, as well as Ψ defined by (8), is a par-
ticular case of more general relation that in the spheric
coordinates r, ϑ, ϕ takes the form

Φs =
τ2 − r2

τ − r cosΘ
,

cosΘ = cosϑ cosϑ0 + sinϑ sinϑ0 cos (ϕ− ϕ0) ,
(20)

where ϑ0 and ϕ0 are constants [13]. Investigation and pos-
sible generalization of such waves is one among future ex-
tensions of this work.
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Although the primary goal of this investigation is gen-
eralization of localized waves, the initial expressions that
were used for their construction, namely, a family of non-
axisymmetric invariable-profile wavefunctions (5), are of
independent interest. They present another direction of
development of this research in context of widely dis-
cussing investigations on beams with invariant transverse
structure. Choosing different complex transverse factors
w (x1 ± ix2) and separating the real or imaginary part,
one can obtain beams of desired structure, which remains
unchanged in both transverse and longitudinal directions.
Wavefunctions (5) can be treated as generalization of
plane waves, and traditional approach allows even solv-
ing problems of reflection and refraction of scalar and
electromagnetic waves at the plane boundaries. In the
case of electromagnetic waves all E and B components
can be constructed using the scalar wavefunction as the
Whittaker-Bromwich potential.

The research described in this paper was made possible in part
by Grant number 99-02-16893 from the Russian Foundation for
Basic Research.
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